

CREATE

CREATE - INNOVATIVE OPERATIONS AND CLIMATE AND WEATHER MODELS TO IMPROVE ATM RESILIENCE AND REDUCE IMPACT

(Reate

- Prof. Angelo Riccio
- University of Naples, Parthenope
- Project Manager
- July 6th 2022

Co-funded by the European Union

Partnership

- 1. UNIPARTH, Università degli Studi Napoli «Parthenope»
- 2. ARIANET srl
- 3. CIRA Italian Aerospace Research Center
- 4. FMI Finnish Meteorological Institute
- 5. ISSNOVA, Institute for Sustainable Society and Innovation
- 6. NLR Netherlands Aerospace Center
- 7. UPC Universitat Politecnica de Catalunya

FINNISH METEOROLOGICAL INSTITUTE

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Institute for Sustainable Society and Innovation

CREATE is a project aligned with the research topic "Environment & Meteorology for ATM", which is part of the research area "ATM Excellent Science & Outreach" of the SESAR 2020 Exploratory Research programme (call H2020-SESAR-2019-2).

Integrate new meteorological and air quality products into ATM

- CREATE explores the capabilities of high-resolution CTMs (Chemical-Transport Models) for air quality assessment studies to test the advantages in terms of environmental impact in TMAs (Terminal Manoeuvring Areas), and on the regional and global scales to study the impact of aviation emissions onto the global chemistry.
- CREATE explores the capabilities of CTMs for air quality assessment studies.
- CREATE explores the capabilities of short-range, high-resolution weather prediction models

CREATE is a project aligned with the research topic "Environment & Meteorology for ATM", which is part of the research area "ATM Excellent Science & Outreach" of the SESAR 2020 Exploratory Research programme (call H2020-SESAR-2019-2).

Investigate operational changes to ATM aiming at reducing the environmental impact from aviation

- CREATE proposes new ATM concepts, taking advantage of curved approach/depart RNP procedures and advanced 4D trajectory optimisation and replanning algorithms
- The 4D trajectory optimisation and replanning concept proposed in CREATE is designed as a 4D multi-aircraft optimisation framework

The environmental impact of flight operations is studied for both en-route and TMA phases

CREATE is a project aligned with the research topic "Environment & Meteorology for ATM", which is part of the research area "ATM Excellent Science & Outreach" of the SESAR 2020 Exploratory Research programme (call H2020-SESAR-2019-2).

Enhance ATM efficiency

- CREATE analyses ATM vulnerabilities with respect to weather, by considering both en-route and TMA phases and the different meteorological phenomenon (heavy winds, thunderstorms, rain, low visibility conditions) and severity levels
- CREATE integrates meteorological information for the improvement of the resilience of the ATM system to local weather and global and/or long-term phenomena

A better management of consequential delays is expected

CREATE proposes three solutions

- CREATE-SOL-1: Multi-scale multi-pollutant air quality system (WAQS)
 - This solution enables the evaluation of the impact that the air traffic regulation policy options can have on the environment and climate, estimating the extent of the environmental impacts that current and future air traffic movements might have
- CREATE-SOL-2: Multi-aircraft environmentally-scored weather-resilient optimized 4D-trajectories
 - This solution aims to support the update and revision process of the reference business trajectory (RBT) in highly disrupted scenarios due to weather hazards or climate-sensitive zones, tackling (near) real-time aspects and the network and safety constraints arising in a multi-aircraft environment
- CREATE-SOL-3: CO₂ and non-CO₂ balanced Environmental Scores Module
 - The solution points to the "greenness" of aircraft trajectories related to flight and ATC sector environmental performance. Candidate trajectories are evaluated with respect to CO₂, NO_x and contrail probability formation

Regional scale emission – all sectors

CREATE-SOL-1: exploring the capabilities of WAQS for air quality assessment studies, an example of application for the Capodichino TMA

CO/10 t/year	NMVOC t/year	NH3 t/year	NOX t/year	PM2.5 t/year	PM10 t/year	SO2 t/year	DIOX g/year	IPA kg/year
71	93	8	1257	13	18	13	0	0
13131	16165	151	4324	9917	10028	410	11	5389
118	77	25	2603	173	206	744	0	2
0	2772	0	0	199	333	243	0	46
0	1071	0	0	0	0	0	0	0
0	23046	0	0	0	0	0	0	1
4163	11357	552	32052	3245	9140	31	1	212
1174	2640	1	13891	699	700	769	0	21
168	376	146	101	70	81	19	0	207
27	52	17731	672	520	1922	0	0	0
316	499	39	163	489	539	23	4	3460
24	27	0	1407	13	13	71	0	0
19193	58175	18653	55062	15324	22967	2252	16	9337
	CO/10 t/year 71 13131 118 0 0 0 0 4163 1174 168 27 316 24 24 19193	CO/10 NMVOC t/year t/year 71 93 13131 16165 118 77 0 2772 0 1071 0 23046 4163 11357 1174 2640 168 376 27 52 316 499 24 27 19193 58175	CO/10 NMVOC NH3 t/year t/year 71 93 8 13131 16165 151 118 77 25 0 2772 0 0 2772 0 0 23046 0 4163 11357 552 1174 2640 1 168 376 146 27 52 17731 316 499 39 24 27 0 19193 58175 18653	CO/10 NMVOC NH3 NOX t/year t/year t/year t/year non 71 93 8 1257 13131 16165 151 4324 118 77 25 2603 0 2772 0 0 0 1071 0 0 0 23046 0 0 4163 11357 552 32052 1174 2640 1 13891 168 376 146 101 27 52 17731 672 316 499 39 163 24 27 0 1407 19193 58175 18653 55062	CO/10 NMVOC NH3 NOX t/year PM2.5 t/year t/year t/year t/year t/year 71 93 8 1257 13 13131 16165 151 4324 9917 118 77 25 2603 173 0 2772 0 0 199 0 2772 0 0 199 0 23046 0 0 0 1163 11357 552 32052 3245 1174 2640 1 13891 699 168 376 146 101 70 27 52 17731 672 520 316 499 39 163 489 24 27 0 1407 13 19193 58175 18653 55062 15324	CO/10 t/yearNMVOC t/yearNH3 t/yearNOX t/yearPM2.5 t/yearPM10 t/year719381257131813131161651514324991710028118772526031732060277200199333010710000023046000041631135755232052324591401174264011389169970016837614610170812752177316725201922316499391634895392427014071313191935817518653550621532422967	CO/10 NMVOC NH3 NOX t/year PM2.5 PM10 SO2 1/year t/year t/year t/year t/year t/year t/year 71 93 8 1257 13 18 13 13131 16165 151 4324 9917 10028 410 118 77 25 2603 173 206 744 0 2772 0 0 199 333 243 0 1071 0 0 0 0 0 1163 11357 552 32052 3245 9140 31 1174 2640 1 13891 699 700 769 168 376 146 101 70 81 19 27 52 17731 672 520 1922 0 316 499 39 163 489 539 23 24	CO/10 t/yearNMVOC t/yearNH3 t/yearPM2.5 t/yearPM10 t/yearSO2 t/yearDIOX g/year71938125713181301313116165151432499171002841011118772526031732067440027720019933324300107100000002304600000041631135755232052324591403111174264011389169970076901683761461017081190275217731672520192200316499391634895392342427014071313710191935817518653550621532422967225216

Comparison of airport emissions with other emissions by sectors in the Campania region in 2018

	CO/10 NMVOC t/year t/year	NMVOC	NH3 t/year	NOX t/year	PM2.5	PM10	SO2	DIOX	IPA
		t/year			t/year	t/year	t/year	g/year	kg/year
01-Combustion in energy and transformation industries	0%	0%	0%	2%	0%	0%	1%	0%	0%
02-Non-industrial combustion plants	68%	28%	1%	8%	65%	44%	18%	65%	58%
03-Combustion in manufacturing industry	1%	0%	0%	5%	1%	1%	33%	1%	0%
04-Production processes	0%	5%	0%	0%	1%	1%	11%	0%	0%
05-Extr. and distr. of fossil fuels and geothermal energy	0%	2%	0%	0%	0%	0%	0%	0%	0%
06-Solvent and other product use	0%	40%	0%	0%	0%	0%	0%	0%	0%
07-Road transport	22%	20%	3%	58%	21%	40%	1%	8%	2%
08-Other mobile sources and machinery	6%	5%	0%	25%	5%	3%	34%	0%	0%
09-Waste treatment and disposal	1%	1%	1%	0%	0%	0%	1%	1%	2%
10-Agriculture	0%	0%	95%	1%	3%	8%	0%	0%	0%
11-Other sources	2%	1%	0%	0%	3%	2%	1%	25%	37%

Yearly mean concentrations – all emissions

CREATE-SOL-1: exploring the capabilities of WAQS for air quality assessment studies, an example of application for the Capodichino TMA NO₂: yearly mean concentration

 O_3 : yearly mean concentration

Yearly mean concentrations – all emissions

CREATE-SOL-1: exploring the capabilities of WAQS for air quality assessment studies, an example of application for the Capodichino TMA

PM_{2.5}: yearly mean concentration

PM₁₀: yearly mean concentration

Airport and air traffic contribution

CREATE-SOL-1: exploring the capabilities of WAQS for air quality assessment studies, an example of application for the Capodichino TMA values > 1 µg/m³ nearby the

Detailed local scale emission – aviation

CREATE-SOL-1: exploring the capabilities of WAQS for air quality assessment studies, an example of application for the Capodichino TMA - detailed estimation of the airport emissions

- Input data: flight register from/to Napoli Capodichino (LIRN) in 2018. (Aircraft type, number and model of engines, specific time in mode)
- Methodology : AEM Kernel emission calculation, by each LTO phase
- Aggregated emission results by phase:

CREATE Project – GENERAL PRESENTATION

Results - NO₂ concentrations, yearly average, all activities

CREATE Project – GENERAL PRESENTATION

NO₂ concentration contributions by phase

Remarks

- Emission from the aviation sector usually represent a minor fraction, al least for the case analyzed in this project
- Aviation emissions mainly affect air quality in areas nearby the airport (<2-3 km)
- NO₂ shows the largest concentration impact, ozone depletion prevails nearby the airport
- Aviation contribution is usually not detectable from urban air quality networks
- High episodic concentrations can occur in the vicinity of the airport
- Microscale concentration over short time periods (<1h) should be investigated by obstacle resolving modelling and short time measurements (tomorrow presentation)

The CREATE ConOps framework

CREATE-SOL-2: Multi-aircraft environmentally-scored weather-resilient optimized 4D-trajectories

Within CREATE-SOL-2 a concept of operations (ConOps), related to the trajectory optimisation framework, has been designed, addressing the integration of various elements:

- a) multiple aircraft considered in the generation of 4D optimised trajectories;
- b) Numerical Weather Prediction (NWP) and Ensemble Weather Forecasting (EWF) used for tactical trajectory replanning by predicting weather scenarios a few hours into the future of a given flight;
- c) implementing an environmental-score assessment for all proposed candidate routes in the system;
- d) Air traffic control (ATC) driven demand-capacity balancing (DCB) decision-making process to select overall optimum of the proposed trajectories within a use-case.

Demos for CREATE-SOL-2 have been applied for both en-route and TMA use-cases

Scenario sketch

CREATE-SOL-2: Multi-aircraft environmentally-scored weather-resilient optimized 4D-trajectories

sesa

Scenario sketch

CREATE-SOL-2: Multi-aircraft environmentally-scored weather-resilient optimized 4D-trajectories

sesa

The framework

4D-trajectories

CREATE Project – GENERAL PRESENTATION

sesa

JOINT UNDERTAKING

An example of application – en-route

Sesar JOINT UNDERTAKING optimized

CREATE-SOL-2: Multi-aircraft environmentally-scored weather-resilient optime 4D-trajectories

Weather related no-fly areas by using CAPE > 120 J/kg and precipitations > 0.3 mm/h (July 27, 2018). Left: Z10:00; right Z10:30

An example of application – en-route

4D-trajectories

<u>Case study 1</u>: 1152, 1160, 1173, 1181, 1183 flights for 9 AM, 9.30 AM, 10 AM, 10.30 AM and 11 AM on July 27, 2018 Case study 2: 393, 319, 269, 235, 227 and 153 flights for 4 PM, 4.30 PM, 5 PM, 5.30 PM, 6 PM and 6.30 PM

Up to 14 alternative trajectories were computed for each flight

The total time to run all the simulations for one time period took a minimum of 3.8 minutes (at 6.30 PM) and a maximum of 54 minutes (at 11 AM) Laptop computer running Ubuntu 20.04 LTS, with 16GB of RAM memory and an Intel(R) Core(TM) i7-1185G7 @ 3.00GHz processor

An example of application – en-route

CREATE-SOL-2: Multi-aircraft environmentally-scored weather-resilient optim 4D-trajectories

LOT33, a Boeing B787-800 flying from Budapest airport (LHBP) to JFK airport (KJFK) on July 27, 2018

Iteration from 10:00 to 10:30

CREATE Project – GENERAL PRESENTATION

Iteration from 10:30 to 11:00

The TS is based on a MILP (mixed-integer linear programming) model with several constraints to ensure the demand is below capacity for all sectors and with the following objective function, considering the environmental score and the AUs extra costs due to the extra direct operating costs and delay:

$$J = \sum_{a \in \mathcal{A}} z_a [w_e E_k + w_c C_k + w_d D_k]$$

In the DMPA, several weights are assigned to the different elements present in the TS objective function

The environmental score is based on pollutant emission, weighted with respect the background concentrations

$$E_k = \frac{\sum_i (\sigma_{yi} \sigma_{zi} \times EMP_i \times CP_i)}{\sum_i CP_i}$$

EMP_i is the pollutant **P** emission **CP**_i is the pollutant **P** environmental concentration $\sigma_{yi}\sigma_{zi}$ = a normalization factor to take into account for cross-track and vertical dispersion

Indicators are computed for NOx and PM10

CREATE-SOL-2: Multi-aircraft environmentally-scored weather-resilient optime 4D-trajectories

Original reference trajectories for TMA phase

CREATE-SOL-2: Multi-aircraft environmentally-scored weather-resilient optir 4D-trajectories

Original reference trajectories for TMA phase + NFZ

CREATE-SOL-2: Multi-aircraft environmentally-scored weather-resilient optir 4D-trajectories

Optimized trajectories (TO module) for TMA phase + NFZ

CREATE-SOL-2: Multi-aircraft environmentally-scored weather-resilient optir 4D-trajectories

Selected trajectories (TS module) for TMA phase + NFZ

Remarks

- The framework allows to generate a set of alternative trajectories per flight in a multi-aircraft environment with the TO module, avoiding weather related no-fly areas and contrail-sensitive areas located across the original trajectory
- The algorithm is fast enough to be used (and re-used) also for real-time applications, given the background information on weather and air quality
- An environmental score has been introduced in the optimization goal function, as well as constraints taking into account the capacity of airspace sectors
- The final aim is to develop innovative procedures for the ATM system to reduce the climate and environmental impact of aviation, while increasing the resilience of air operations to weather phenomena.

The CREATE ConOps framework

CREATE-SOL-3: CO₂ and non-CO₂ balanced Environmental Scores Module (ESM)

Probability to encounter a constrail-sensitive area (CSA) for the winter season (DJF, right), and summer (JJA, left) seasons Data are estimated from temperature and relative humidity fields from all years (1979-2020) of the ERA5 database at 250 hPa

The CREATE ConOps framework

CREATE-SOL-3: CO₂ and non-CO₂ balanced Environmental Scores Module (ESM)

The Environmental Scoring Module (ESM) assigns scores to each candidate trajectory (CT). ESM considers non-CO₂; NO_x, H₂O and contrail formation

- CO₂ is linearly related to the total emitted amount per flight and therefore compared to other CTs
- NO_x and H_2O emissions impact are related to altitude.
- Contrail formation probability and impact are related to Climate Sensitive Areas (CSA)* and interference with other Candidate Trajectories.

*The current scope only considers Contrail Formation Region (CFR) to be relevant for the definition of CSAs

Solution schematic

ESM scoring elements

CO₂ score = total emissions over total flight compared to other CTs.

THANK YOU FOR YOUR ATTENTION

the European Union

EUROPEAN PARTNERSHIP

