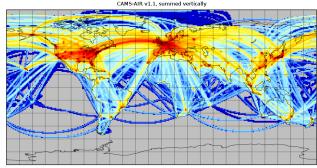
CREATE: Aviation impact on atmosphere and climate using SILAM CTM.

Risto Hänninen, Mikhail Sofiev, Rostislav Kouznetsov and the other members of the SILAM-team. Finnish Meteorological Institute CREATE Final Exploitation Event, September 13, 2022, Naples, Italy


LMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTI

Global aviation emissions

See e.g.: D.S. Lee, *et al.* (2021), The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018, Atm. Env., Vol 244, 117834, and references therein.

- 2.5% of global CO_2 emissions
- 1.9% of global GHG emissions
- NO_x: \sim 2 Tg/year (lightning \sim 5 Tg/year)
- Water contrails (net warming)
- Aerosols (cooling)

2019 NOx Aircraft Anthropogenic Emissions

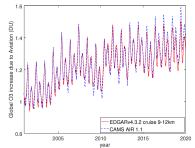
NOx Aircraft Anthropogenic Emissions (kg m-2 s-1)

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUT

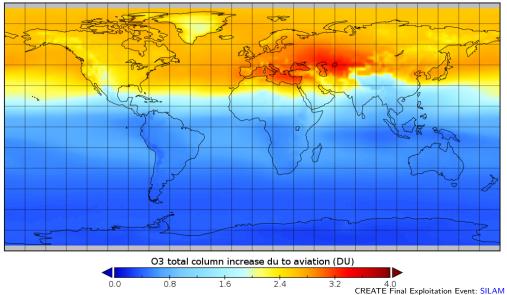
SILAM System for Integrated modeLling of Atmospheric coMposition

SILAM v.5.7 CTM using CBM05 chemistry including stratosphere:

- Various emissions from different inventories:
 - Antropogenic emissions (e.g. CAMS-GLOB-2.1/4.2)
 - Lightnings (GEIA)
 - Aviation (EDGAR4.3.2 / CAMS-AIR-1.1)
 - Biogenic (MEGAN-MACC, CAMS-BIO-3.1)
 - N₂O, CFCs, CH₃Cl and CH₃Br etc.
- Secondary Organic Aerosols:
 - Based on volatility bin approach (e.g. Woody et al. ACP201
- Sea-salt emissions including its bromine factor:
 - Based on combined Monahan-Martensson method.
- Wind-blown dust source.
- DMS from seas.

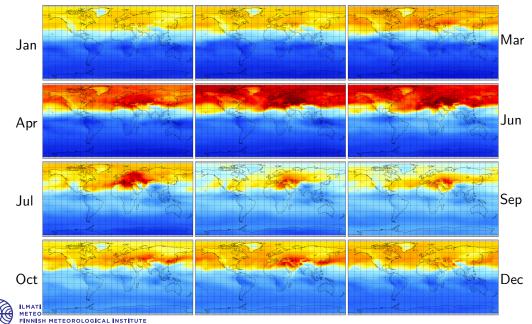

Performed global simulations with and without aviation for 2000–2019 (WP2) and European region for 2010 including also the effect of LTO emissions (WP3).

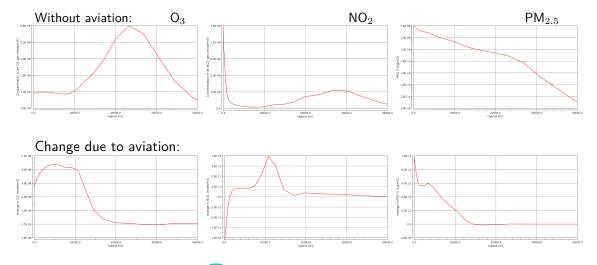
ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUT



2010 annual total ozone column change due to aviation

2010 mean total O3 column increase due to aviation

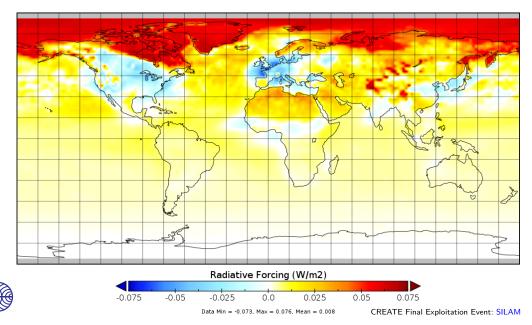

EDGAR v4.3.2 aviation with cruise 9-12km

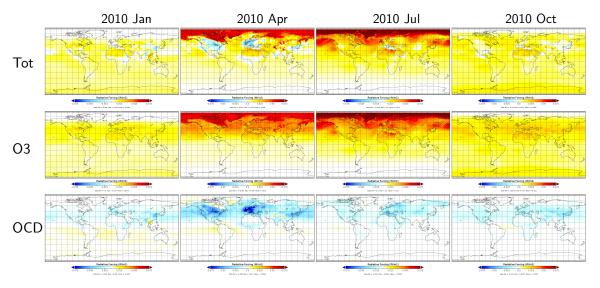

Data Min = 0.25, Max = 3.4, Mean = 1.2

4 / 16

2010 monthly total ozone column change due to aviation

2010 global mean and aviation change for O_3, NO_2, and PM_{2.5}





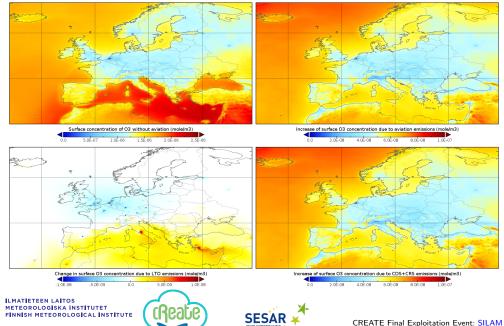
Radiative forcing using libRatran (RF due to changes in O3 and OCD)

Radiative Forcing due to Aviation: 2010 April

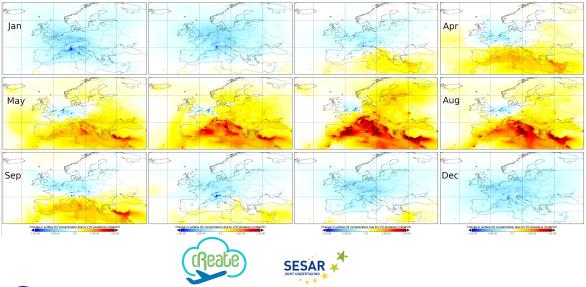
Radiative forcing using libRatran

Summary from global runs

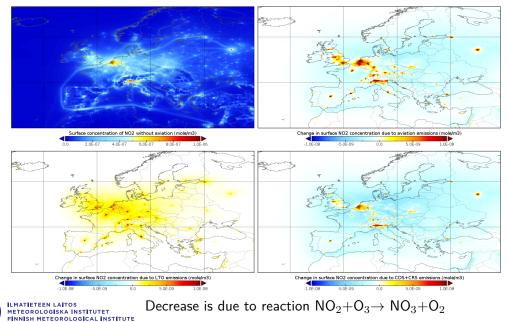
- Analyzed globally the aviation emissions with SILAM:
 - Global 2-degree run for years 2000–2019 with and without aviation.
- Change in total O₃:
 - Aviation brings globally about 1 DU increase in ozone.
 - Concentrated in Northern Hemisphere.
 - Maximum monthly mean increase around 4...5 DU above Europe in May.
 - Main increase in troposphere.
- Change in NO₂:
 - Largest increase at the cruise level.
 - At surface the NO₂ concentrations slightly drop (global and yearly mean)
 - Decrease is due to the reaction $NO_2+O_3 \rightarrow NO_3+O_2$ and due to increase in O_3 that originates from high altitude emissions (mainly NO_x).
- Estimated the Radiative Forcing due to O_3 & aerosols (direct effect/change in OCD):
 - Ozone tend to warm the climate, RF \sim +13 mW/m^2.
 - Direct aerosol effect is cooling, on average, RF \sim -4 mW/m^2.
 - Effects seem to be smaller than the warming due to contrail formation and CO_2 emissions.

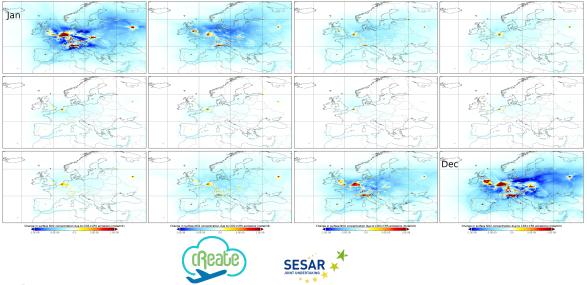


ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUT



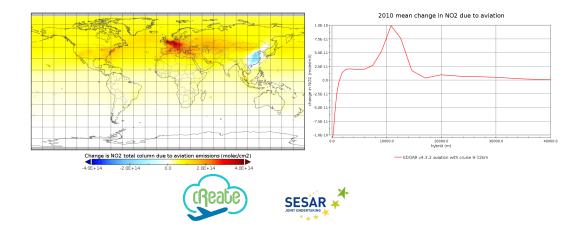
Europe: Surface O₃ (2010 mean)

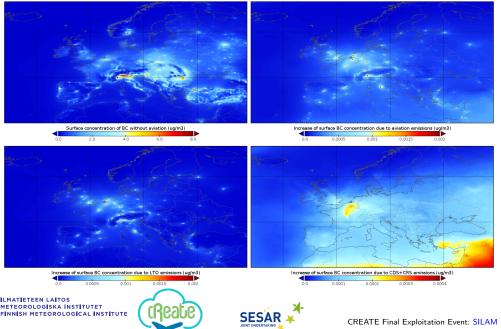

Europe: Surface O_3 due to LTO emissions (monthly for 2010)



ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

Europe: Surface NO₂ (2010 mean)


Europe: Surface NO₂ due to CDS+CRS (monthly for 2010)


ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

Global: NO₂ column change due to aviation (2010 mean)

Europe: Surface BC (part of PM_{2.5}**)**

European summary

- Analyzed aviation emissions in Europe with SILAM:
 - Most effects at the surface are due to NO_x emissions.
- Change in surface O₃:
 - Total effect of aviation is to increase surface O_3 .
 - LTO emissions tend to decrease O₃ locally (titration).
 - Far away from the airports even the LTO emissions tend increase surface O_3 .
 - Strong seasonality in the effect of LTO emissions.
- Change in surface NO₂:
 - Can be positive or negative!
 - Increase is mainly due to local NO_x emissions near aiports.
 - Decrease is due to the reaction $NO_2+O_3 \rightarrow NO_3+O_2$ and due to increase in O_3 that originates from high altitude emissions (mainly NO_x).
- Change in surface BC:
 - Positive but small, concentrated near the airports.
 - Only due to LTO emissions.

